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Anomalous diffusion of ideal polymer networks
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Internal dynamics of swollen polymer arrays were investigated with Brownian dynamic techniques applied
to regular Rouse networks. In all cases local or self-diffusion decayed as a power law with a power propor-
tional to the given topological dimension. This behavior allows for the classification of three dynamic regimes:
subcritical topologies accommodate power law anomalous diffusion; logarithmic anomalous diffusion occurs
within the critical topological dimensiod;=2; and upper-critical topologies siege bounded anomalous diffu-
sion.[S1063-651X97)13206-9
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Whenever particles in solution interact, their diffusion co- have the fractal trace dimensions ayf=2.87+0.01 in two
efficient changes with time and eventually reaches amlimensions2D) andd,=5.0+0.2 in 3D[8].
asymptotic simple behavior. Power law behavior has been We have investigated the dynamic scaling hypothesis for
often called anomalous diffusion and we use these wordaetworks by performing Brownian dynamics simulations, us-
also in the same sense here. Particle diffusion in a fractahg the Langevin approach to generalized Rouse polymer
substrate is known to be anomalous and corresponding critgels of regular topology. The generalized Rouse gels are ide-
cal dynamic exponents have been estimated from theories atized by the ball and spring model, the balls taking place of
the effective medium approximatidd]. Diffusion of probe  sites and springs of bonds in the networl&g. 1). The
particles inside a static gel matrix close to percolation threshspring constants are related to entropic polymer elasticity
old have often been analyzed in this contegt Chain poly-
mer liquids also display dynamic scaling, as given within the
framework of many theoriegsee, for example[3]). With
this paper we bring attention to the often neglected dynamics
of swollen gel networks themselves. Even homogeneous,
nonfractal, polymer networks should display a broad scaling

regime if one considers the entropic wandering of its flexibleas one considers ideal phantom polymer chains of Flory ra-
strands. This problem could be given the image of randongius ¢ [9]. The balls (particle$ concentrate the hydrody-
walkers with links(three or more at each walker or knot to namic drag

make a weh Neighbor interactions will give walkers a po-
sition persistence, i.e., their diffusion will be progressively
hindered by the link topology in a nesting effect. Consider-
ing a lack of intrinsic coherence from the walkers action,
their diffusion coefficient will decrease in time and with the
size of the net. This kind of random walk with memory is
already known to occur for linear polymel4] and for the
one dimensional lattice gd§]. The resulting self-diffusion

is anomalous with a Gaussian space-time distribution
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whered, is the embedding space dimension and
(r2(t))oct?n, (2)

whered,, is the virtual dimension of the subdiffusive walk
trace[6]. For the one dimensional lattice gas and the Rous:
polymerd,,=4, while for the Rouse-Zimm polymet,, = 3.

In concentrated regimes, reptation of polymers may occur
intermediate time scales witd,=8 [7,4]. The important
class of random walks on percolation clusters is known tc

FIG. 1. Brownian dynamics of regular Rouse networks were
*Electronic address: pedro@fisica.ufmg.br implemented with periodic boundary conditions.
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kgT 4
= Dy’ (4)
whereDy, is the ball free diffusion coefficient. In the spirit of
Rouse’s original work, steric and hydrodynamic interactions
were otherwise neglected. The latter, as given by the Zimm
corrections with the Oseen tensor, should produce quantita-
tive corrections to the dynamic scaling powers. Otherwise, in

concentrated dispersions, hydrodynamic interactions become @
highly screened10] and the Rouse approach applies well A
[11,4]. This should happen for most gels to which the present v

approach could give the most realistic results. Finally, as we
are interested only in the long time, or Brownian regime, the
Langevin equation is taken without inertial terfri]
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where ﬂ is a 6 correlated force obeying Gaussian statistics
with strength n
(fi(H)-fj(t"))=keT 8y 8(t—t"), (6) N R
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and theni sum runs over the neighbors of particlas given
by network topology. We have used periodic boundary con-
ditions for linear configurationg&opological or graph dimen-
siond;=1) of N=200 particles in the embedding dimension
d.=3; and for 10 100 particles and 3030x 30 particles

FIG. 2. Half mean square displacement per degree of freedom
for the linear(l), squargs), and cubidc) networks. Asymptotic fits

to Eqg. (9) gave, respectivelyA;=—0.0044); A,=0.03952);

square and cubic arrays f3=d,=2 andd,=d,=3, respec- andA;=0.08443). Dotted line corresponds to free diffusion.

tively. In the following we express our results in terms of the
unitary free diffusion coefficienDy=1 and Flory segment
radiusé=1.

The half mean squared displacement per degree of fre
dom(r2)/2d, obtained for the above mentioned networks are

with 7=1/1277=0.026 53. This general and simple result can
be readily integrated to yield the long time mean square dis-
%'Iacements for the,=1, 2, and 3 networks, respectively,

shown in Fig. 2 as a log-log plot. At short times, for small (r?)
displacements, diffusion is normal, occurring with the free T=A1+ 2(7t)2 (93
diffusion coefficient. Interactions progressively reduce the
diffusion coefficient down and they will eventually reach the 2
. o . . (r)
Dy/N long time limit value. The correct scaling for linear T=A2+r In(t/7), (9b)

polymers Eq(2) is immediately recovered from the slope of
the corresponding data set. Nevertheless, 2D networks reach
no clear power scaling and the mean squared displacemen
range of 3D network walks is bound to a limiting small range
below 0.1. The situation can be clarified by plotting the dif-
ferential diffusion coefficient

1 o(r?) -

P=2d, ot o

as shown in Fig. 3. A power scaling is now obtained for all
the networks, with assimptotic functionality

5=(3) "

with 7=0.0285(2) andr=d,/2 within 1%. We note that Eq.
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(8) can be derived from the linear Rouse equation by the FG. 3. Differential diffusion coefficient for the lined), square
standard technique of overdamped phonon mode analysig), and cubic(c) networks. Asymptotic fits to Eq(8) gave,
with equipartition of energy. This result does not depend ontespectively, «;=0.5064), r;=0.028%1); a,=1.011), =,

the embedding dimensiath,, which appears only as a nor- =0.02871); anda;=1.526), r,=0.02835). Dotted line corre-
malization in Eq(7). The asymptotic regime is then obtained sponds to free diffusion.
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FIG. 4. Qistribution function_s\l’(r,t) for the linear(l), square FIG. 5. Dynamic self-structure factag(q,t) for the linear(),
(), and cubic(c) networks at timed=0.5 (8) andt=5 (b) are gy are(s), and cubic(c) networks atg=1. Dotted line represents
shown to be Gaussians in this linearized log-square plot. the decay due to free diffusion alone.
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The above relations were fitted to the”) data yielding The subcritical decay is a stretched exponential, while the
A;=-0.0044), A,=0.03982), and A3=0.084Z3). critical decay is characterized bycadependent power law.
From the known diffusivity(internal modesof linear Rouse The bounded diffusion regime decays to the Corresponding
chains[13] compared with Eq(9a) one hasA;=0. We are finjte value exp{-0?A3). These features are evident in Fig. 5
not aware of any estimates for qub) or (9C), although where we piot exp6<r2(t)>/2de) from our measurements.
numerical analySiS of the Rouse equation should be feasible. The structure factors are often more easiiy measured than
If Eq. (8) is universal and valid for fractal networks also, mean squared displacements in scattering experiments. In the
thendt:2 is a critical dimension for the dynamiCS of Rouse case of poiymer geis’ the dynamic ||ght Scattering technique
networks, which will have a Iogarithmic displacement. To- (photon Corre|atiohshou|d appiy well. The time domain of
pologies with higher graph dimensionality will bound the gelf-diffusion scaling t> (D &%) “1~10"° s] is compatible
network to configurations around the equilibrium, and lowerth the apparatus resolution>10¢ s) [14]. Logarithmic
topologies should give rise to the usual unbounded anomaspyrelators should present the appropriate time scales for
lous diffusion. S ~ studying these nonexponential decays. Gels should be
We have also measured the distribution functionsyashed to remove debris but should also be tagged with
W(r,t), the probability for a given point in the network to strong scatterers to display the true self-structure factor in-
have a displacement in time t, to be Gaussians in the stead of the usual collective concentration decay. Such ex-
asymptotic regimes. Figure 4 shows, for instance, a lineameriments should be able to give the first measurements of
ized lod¥(r)] vsr? plot for the networks at times=0.5and  hounded anomalous diffusion and test the validity of the hy-
5. Since the Gaussian widths are given by the mean squargflodynamic screening approximation, implied in E20c).
displacements one can also compute the dynamic self- This paper stresses the relation between anomalous self-
structure factor decays to &(q,t)=exd—gXr’(t))/2d.].  diffusion of a polymeric network with its linking topology
Dynamic structure factors are regularly measured in the conggraph dimension It asks for further investigation on the
text of gel studies. The interpretation of their often broadeffect of hydrodynamic interactions on relati¢8) for the
time spreading is controversial. For the ideal networks corgifferential self-diffusion coefficient and possibly a general
responding, respectively, to the subcritical, critical, andderivation of its universality. It also leads naturally into a
upper-critical regimes presented here one finds division of anomalous diffusion phenomena in three classes

s(a.)xexd —(TH¥2:  Ty=47q’, (103 with different qualitative behavior.
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