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Anomalous diffusion of ideal polymer networks
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~Received 29 August 1996!

Internal dynamics of swollen polymer arrays were investigated with Brownian dynamic techniques applied
to regular Rouse networks. In all cases local or self-diffusion decayed as a power law with a power propor-
tional to the given topological dimension. This behavior allows for the classification of three dynamic regimes:
subcritical topologies accommodate power law anomalous diffusion; logarithmic anomalous diffusion occurs
within the critical topological dimensiondt52; and upper-critical topologies siege bounded anomalous diffu-
sion. @S1063-651X~97!13206-8#

PACS number~s!: 83.20.Jp, 05.40.1j, 83.10.Nn
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Whenever particles in solution interact, their diffusion c
efficient changes with time and eventually reaches
asymptotic simple behavior. Power law behavior has b
often called anomalous diffusion and we use these wo
also in the same sense here. Particle diffusion in a fra
substrate is known to be anomalous and corresponding c
cal dynamic exponents have been estimated from theorie
the effective medium approximation@1#. Diffusion of probe
particles inside a static gel matrix close to percolation thre
old have often been analyzed in this context@2#. Chain poly-
mer liquids also display dynamic scaling, as given within t
framework of many theories~see, for example,@3#!. With
this paper we bring attention to the often neglected dynam
of swollen gel networks themselves. Even homogeneo
nonfractal, polymer networks should display a broad sca
regime if one considers the entropic wandering of its flexi
strands. This problem could be given the image of rand
walkers with links~three or more at each walker or knot
make a web!. Neighbor interactions will give walkers a po
sition persistence, i.e., their diffusion will be progressive
hindered by the link topology in a nesting effect. Consid
ing a lack of intrinsic coherence from the walkers actio
their diffusion coefficient will decrease in time and with th
size of the net. This kind of random walk with memory
already known to occur for linear polymers@4# and for the
one dimensional lattice gas@5#. The resulting self-diffusion
is anomalous with a Gaussian space-time distribution

P~r ,t !}e2~der
2!/@2^r2~ t !&#, ~1!

wherede is the embedding space dimension and

^r 2~ t !&}t2/dw, ~2!

wheredw is the virtual dimension of the subdiffusive wa
trace@6#. For the one dimensional lattice gas and the Ro
polymerdw54, while for the Rouse-Zimm polymerdw53.
In concentrated regimes, reptation of polymers may occu
intermediate time scales withdw58 @7,4#. The important
class of random walks on percolation clusters is known
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have the fractal trace dimensions ofdw52.8760.01 in two
dimensions~2D! anddw55.060.2 in 3D @8#.

We have investigated the dynamic scaling hypothesis
networks by performing Brownian dynamics simulations, u
ing the Langevin approach to generalized Rouse polym
gels of regular topology. The generalized Rouse gels are
alized by the ball and spring model, the balls taking place
sites and springs of bonds in the networks~Fig. 1!. The
spring constants are related to entropic polymer elasticity

k5
3kBT

j2
, ~3!

as one considers ideal phantom polymer chains of Flory
dius j @9#. The balls ~particles! concentrate the hydrody
namic drag

FIG. 1. Brownian dynamics of regular Rouse networks we
implemented with periodic boundary conditions.
631 © 1997 The American Physical Society
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z5
kBT

D0
, ~4!

whereD0 is the ball free diffusion coefficient. In the spirit o
Rouse’s original work, steric and hydrodynamic interactio
were otherwise neglected. The latter, as given by the Zi
corrections with the Oseen tensor, should produce quan
tive corrections to the dynamic scaling powers. Otherwise
concentrated dispersions, hydrodynamic interactions bec
highly screened@10# and the Rouse approach applies w
@11,4#. This should happen for most gels to which the pres
approach could give the most realistic results. Finally, as
are interested only in the long time, or Brownian regime,
Langevin equation is taken without inertial terms@12#

z
]rW i
]t

52k(
ni

~rW i2rWni!1 fW i , ~5!

where fW i is a d correlated force obeying Gaussian statist
with strength

^ fW i~ t !• fW j~ t8!&5kBTzd i jd~ t2t8!, ~6!

and theni sum runs over the neighbors of particlei as given
by network topology. We have used periodic boundary c
ditions for linear configurations~topological or graph dimen
siondt51) of N5200 particles in the embedding dimensio
de53; and for 1003100 particles and 30330330 particles
square and cubic arrays inde5dt52 andde5dt53, respec-
tively. In the following we express our results in terms of t
unitary free diffusion coefficientD0[1 and Flory segmen
radiusj[1.

The half mean squared displacement per degree of f
dom^r 2&/2de obtained for the above mentioned networks a
shown in Fig. 2 as a log-log plot. At short times, for sm
displacements, diffusion is normal, occurring with the fr
diffusion coefficient. Interactions progressively reduce
diffusion coefficient down and they will eventually reach t
D0 /N long time limit value. The correct scaling for linea
polymers Eq.~2! is immediately recovered from the slope
the corresponding data set. Nevertheless, 2D networks r
no clear power scaling and the mean squared displacem
range of 3D network walks is bound to a limiting small ran
below 0.1. The situation can be clarified by plotting the d
ferential diffusion coefficient

D̃[
1

2de

]^r 2&
]t

~7!

as shown in Fig. 3. A power scaling is now obtained for
the networks, with assimptotic functionality

D̃5S tt D 2a

, ~8!

with t50.0285(2) anda5dt/2 within 1%. We note that Eq
~8! can be derived from the linear Rouse equation by
standard technique of overdamped phonon mode ana
with equipartition of energy. This result does not depend
the embedding dimensionde , which appears only as a no
malization in Eq.~7!. The asymptotic regime is then obtaine
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with t51/12p.0.026 53. This general and simple result c
be readily integrated to yield the long time mean square
placements for thedt51, 2, and 3 networks, respectively,

^r 2&
6

5D112~tt !1/2, ~9a!

^r 2&
4

5D21t ln~ t/t!, ~9b!

FIG. 2. Half mean square displacement per degree of freed
for the linear~l!, square~s!, and cubic~c! networks. Asymptotic fits
to Eq. ~9! gave, respectively,D1520.004(4); D250.0395(2);
andD350.0842(3). Dotted line corresponds to free diffusion.

FIG. 3. Differential diffusion coefficient for the linear~l!, square
~s!, and cubic ~c! networks. Asymptotic fits to Eq.~8! gave,
respectively, a150.506(4), t150.0285(1); a251.01(1), t2
50.0287(1); anda351.52(6), t150.0283(5). Dotted line corre-
sponds to free diffusion.
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^r 2&
6

5D322t3/2t21/2. ~9c!

The above relations were fitted to the^r 2& data yielding
D1520.004(4), D250.0395(2), and D350.0842(3).
From the known diffusivity~internal modes! of linear Rouse
chains@13# compared with Eq.~9a! one hasD150. We are
not aware of any estimates for Eqs.~9b! or ~9c!, although
numerical analysis of the Rouse equation should be feas
If Eq. ~8! is universal and valid for fractal networks als
thendt52 is a critical dimension for the dynamics of Rou
networks, which will have a logarithmic displacement. T
pologies with higher graph dimensionality will bound th
network to configurations around the equilibrium, and low
topologies should give rise to the usual unbounded ano
lous diffusion.

We have also measured the distribution functio
C(r ,t), the probability for a given point in the network t
have a displacementr in time t, to be Gaussians in th
asymptotic regimes. Figure 4 shows, for instance, a line
ized log@C(r)# vs r 2 plot for the networks at timest50.5 and
5. Since the Gaussian widths are given by the mean squ
displacements one can also compute the dynamic s
structure factor decays to beSs(q,t)5exp@2q2^r2(t)&/2de#.
Dynamic structure factors are regularly measured in the c
text of gel studies. The interpretation of their often bro
time spreading is controversial. For the ideal networks c
responding, respectively, to the subcritical, critical, a
upper-critical regimes presented here one finds

Ss~q,t !}exp@2~G1t !
1/2#; G154tq4, ~10a!

Ss~q,t !}t
2b2; b25tq2, ~10b!

FIG. 4. Distribution functionsC(r ,t) for the linear~l!, square
~s!, and cubic~c! networks at timest50.5 ~a! and t55 ~b! are
shown to be Gaussians in this linearized log-square plot.
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Ss~q,t !}exp@~G3t !
21/2#; G35~4t3q4!21. ~10c!

The subcritical decay is a stretched exponential, while
critical decay is characterized by aq-dependent power law
The bounded diffusion regime decays to the correspond
finite value exp(2q2D3). These features are evident in Fig.
where we plot exp(2^r2(t)&/2de) from our measurements.

The structure factors are often more easily measured
mean squared displacements in scattering experiments. I
case of polymer gels, the dynamic light scattering techniq
~photon correlation! should apply well. The time domain o
self-diffusion scaling@ t.(D0j

2)21'1025 s# is compatible
with the apparatus resolution (t.1026 s! @14#. Logarithmic
correlators should present the appropriate time scales
studying these nonexponential decays. Gels should
washed to remove debris but should also be tagged w
strong scatterers to display the true self-structure factor
stead of the usual collective concentration decay. Such
periments should be able to give the first measurement
bounded anomalous diffusion and test the validity of the
drodynamic screening approximation, implied in Eq.~10c!.

This paper stresses the relation between anomalous
diffusion of a polymeric network with its linking topology
~graph dimension!. It asks for further investigation on th
effect of hydrodynamic interactions on relation~8! for the
differential self-diffusion coefficient and possibly a gene
derivation of its universality. It also leads naturally into
division of anomalous diffusion phenomena in three clas
with different qualitative behavior.

This work was supported by the Brazilian agenc
FAPEMIG and FINEP.

FIG. 5. Dynamic self-structure factor,Ss(q,t) for the linear~l!,
square~s!, and cubic~c! networks atq51. Dotted line represents
the decay due to free diffusion alone.
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